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Matrix cracking with frictional bridging fibres 
in continuous fibre ceramic composites 
Part II Cracking due to residual stresses 

C. H. HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, 
TN 37831, USA 

Interfacial debonding and matrix cracking due to residual axial stresses have been analysed 
for unidirectional fibre-reinforced ceramic composites. The analytical solutions for the 
crack-opening displacement, the axial displacement of the composite due to interfacial 
debonding, and the critical residual axial stress for matrix cracking have been obtained. 
The solutions were then compared with those for tensile loading in the fibre direction. 
Three issues related to Part I, i.e. the effective fracture toughness of the composite, the 
critical loading stress for matrix cracking in the presence of residual stresses, and the 
debonded fibre length due to loading, were also addressed in the present study. 

1. Introduction 
Matrix cracking bridged by intact fibres, which deb- 
ond from the matrix and then slip frictionally against 
the matrix, was analyzed in Part I [11 for unidirec- 
tional fibre-reinforced ceramic composites under ten- 
sile loading parallel to the fibre axis. The effect of 
bonding at the fibre-matrix interface, Poissons's effect 
of the fibre, and residual stresses were included in the 
analysis [11. The premise of the analyses in Part I was 
that interfacial debonding and matrix cracking do not 
occur prior to loading. The case of matrix cracking 
due to residual axial stresses has been analysed else- 
where; however, the interracial bonding was ignored in 
the analysis [21. 

As a complement to Part I, the purpose of 
the present study was to analyse the critical residual 
axial stress for steady state (i.e. long) matrix cracking. 
Interfacial bonding has been included in the analysis. 
The existing solution [21 can be recovered by 
ignoring interracial bonding in the present solution. 
Also, three issues related to Part I were addressed 
in this study. First, the effective fracture toughness 
of the composite has been derived which is essential 
in solving the matrix cracking problem for short 
cracks [3-71. Second, while the effects of the residual 
axial stress on the critical loading stress for matrix 
cracking was addressed qualitatively in Part I, 
its analytical expression was determined in this 
study. Third, the debonded fibre length at the 
critical loading stress for matrix cracking has been 
analysed. This debonded fibre length defines the min- 
imum fibre length required in order to ensure full 
development of the fibre bridging stress during matrix 
cracking. 
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2. Analyses 
A schematic representation of  steady state matrix 
cracking due to residual stresses is shown in Fig. 1 for 
unidirectional composites. The matrix crack is 
bridged by intact fibres, and the shaded areas at the 
interface represent interracial debonding (Fig. I). To 
achieve matrix cracking, the residual axial stress in the 
matrix must be tensile. Accordingly, the residual axial 
stress in the fibre is compressive in order to satisfy the 
equilibrium condition. These residual stresses can oc- 
cur when the thermal expansion coefficient of the 
matrix is greater than that of the fibre and the com- 
posite is cooled from its fabrication temperature. The 
residual axial stresses are zero at the crack surface, 
increase with the axial distance from the crack surface, 
and reach equilibrium values, ~fz and C~mz , respective- 
ly, in the fibre and the matrix, at a distance sufficiently 
remote from the crack surface (Fig. 1). The crack- 
opening displacement, 2u0, and the additional dis- 
placement, Udebond , in the loading direction on each 
side of the composite due to debonding and sliding at 
the fibre-matrix interface are also shown. 

The representative volume element used in Part I is 
used to model the problem depicted in Fig. 1. A fibre 
with a radius, a, is located at the centre of a coaxial 
cylindrical shell of matrix with an outer radius, b, such 
that a2/b 2 corresponds to the volume fraction of fibres, 
Vf (Fig. 2a). During cooling, the composite has a dis- 
placement, Ubonded, in the axial direction when the 
interface remains bonded (Fig. 2b). In the presence of 
interfacial debonding, partial relaxation of the thermal 
stress occurs which, in turn, results in an axial 
displacement of the composite, ~/debond. Both the 
half crack-opening displacement, Uo, and the axial 
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displacement of the composite due to interracial deb- 
ending, Uaeuo,a, are shown in Fig. 2c. 

2.1. Residual axial stresses 
The residual axial stresses in the fibre and the matrix, 
cyf and C~m, are both functions of the axial position, z. 
The mechanical equilibrium condition requires that 

V f o ' f  -1- VmO- m = 0 (1) 

where V~ ( = 1 - Vf) is the volume fraction of the 
matrix. Depending upon the boundary condition (i.e. 
bonded or debonded) at the interface, the residual 
axial stresses can be determined accordingly. 

2. 1. 1. The bonded  interface 
The residual axial stresses in the fibre and the matrix 
have their equilibrium values, ~yf~ and CYm~. Continuity 

U =  Ubonded + Udebon d 
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U =  Ubonded + Udebond 

Figure1 Schematic illustration of residual stress-induced interfacial 
debonding and a steady-state matrix crack bridged by intact fibres. 

of the axial strain is required for the bonded interface, 
such that 

(~fz ~rnz 
E~- + ~ f A T  = Em q- 0~mAT (2) 

where E and ~ are Young's modulus and the thermal 
expansion coefficient, the subscripts, f and m, denote 
the fibre and the matrix, respectively, and AT is 
the cooling temperature range over which stresses can 
be developed. Combination of Equations' 1 and 
2 yields 

-- VmEfEma T 
(~'fz - -  ( 3 a )  

Ec 

VfEfEmET 
O'mz - -  ( 3 b )  

Ec 

where 

Ec = VfEf-~-  VmE m (4) 

and aT = (~f - ~ m )  A T is the thermal mismatch strain 
(and is also the transformation strain defined in Part I) 
between the fibre and the matrix. 

2. 1.2. The debonded  interface 
Interracial debonding occurs when the axial mismatch 
strain between the fibre and the matrix reaches a criti- 
cal value, sa I-8], which can be related to the energy 
release rate for interfacial debonding, Gi, by [9, 10] 

= 2 (  EcGi  )1/2 
8d \aVmEfEm j (5) 

Interfacial debonding with a debonded zone length, 
h, i s shown in Fig. 2c. The residual axial stresses in the 
fibre and the matrix are both zero at the crack surface 
(i.e. at z = h). At the end of the debonding zone (i.e. at 
z = 0), the residual axial stresses in the fibre and the 
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(a) Prior to cooling (b) Cooling without debonding (c) Cooling with debonding 

Figure 2 A representative volume element for the problem of residual stress-induced interfacial debonding and matrix cracking, (a) prior to 
cooling, (b) cooling without interfacial debonding, and (c) cooling with interracial debonding. The half crack opening displacement, u0, and the 
displacement of the composite due to interfacial debonding, Ua~bond, are also shown. 
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matrix, O'fd and Crma, satisfy the following relation 

Crfd + 0~fAT -- O'md - -  CXmAT = ad (6) 
Ef E m 

Combination of Equations 1, 2, 5 and 6 yields 

In the absence of interracial bonding (i.e. O'fd ~-  (3"fz), 

Equation 11 becomes 

- aEc~2 
Uo - (12) 

4VmEfEm~i 

aEc(CYfd- (3"fz) 2 
Gi = (7) 

4 V~Ef Em 

In the absence of interfacial bonding (i.e. Gi = 0), the 
residual axial stress in the fibre at the end of the sliding 
zone has the equilibrium value (i.e. Cyra = ~fz, see 
Equation 7). 

For a frictional interface, an average Poisson's effect 
was adopted in Part I such that the interfacial fric- 
tional stress is dictated by an average value, "ci. The 
residual axial stresses in the fibre and the matrix, 
cyf and Crm, are 

(h) cyf = 1 - -  (3"fd for 0 ~< z ~< h (Sa) 

(h) (5"rn = 1 - -  O'md for 0 ~< z ~< h (8b) 

where the sliding zone length, h, can be determined by 
the stress transfer equation, such that 

aO"fd 
h - (9) 

2~i 

It is noted that of a is compressive (i.e. negative), and 
{i is negative due to the coordinate system (Fig. 2c) 
used in the present study. In the bonded zone (i.e. 
z ~< 0), rye and c% increase quickly from ~fa and Crma to 
their equilibrium values, crf~ and (~mz, respectively 
1-11-13]. 

2.2. The displacements 
Both the crack-opening displacement and the dis- 
placement of the composite due to interfacial debon- 
ding are derived as follows. 

2.2. 1. The crack-opening displacement 
The crack opening displacement is dictated by the 
relative axial displacement between the fibre and the 
matrix at the crack surface. The axial displacements of 
the fibre and the matrix at the crack surface, wf(h) and 
win(h), due to sliding can be obtained by integration of 
the axial strains along the sliding length, such that 

wf(h) = \2Ef + ~fAT (10a) 

wm(h) = h(cYrnd\2Em + 0~rnz~r) (10b) 

It can be derived that the half crack opening displace- 
ment (Fig. 2c), Uo ( = w f ( h )  - w i n ( h ) )  , is 

aEc Ofd ( G'fd ) (11) 
Uo = 2VmEfEm~i\ 2 - O ' fz  

2.2.2. The displacement of the composite 
due to debonding 

This is the relative axial displacement between the 
composites with and without debonding. When the 
interface remains bonded, the axial strain in the com- 
posite, ~c, is described by Equation 2, and the corres- 
ponding axial displacement, We within a length h is 

) wc(h) = h \E  f + cxfAr (13) 

It can be derived that the additional axial displace- 
ment of the composite due to debonding (Fig. 2c), 
/Adebond ( = w f ( h )  - -  we(h)), becomes 

a ~ f d  ( O'fd ) (14) 
b/deb~ = 2Ef~ i \  2 -- ~fz 

In the absence of interfacial bonding (i.e. (Yfd = CYfz), 
Equation 14 becomes 

- -  a ~ 2 z  
Uaobona - - -  (15) 

4Efzi 

2.3. T h e  m a t r i x  c r a c k i n g  s t r e s s  
The energy-based criterion [2-7] has been adopted to 
analyse the critical stress required for steady-state 
matrix cracking. For the problem considered in the 
present study, the following energy terms are involved: 
( 1 )  U f ( r )  and Urn(r) , the elastic strain energies in the 
fibre and the matrix due to residual stresses, (2) U~, the 
energy due to sliding at the debonded interface, (3) Gin, 
the energy release rate for matrix cracking, and (4) Gi, 
the energy release rate for interfacial debonding. 

To adopt the energy-based cracking criterion, 
a steady-state matrix crack in a long specimen of unit 
depth is considered (Fig. 3) [14]. The crack extends 
through the depth of the specimen with a straight 
front. Under residual stresses, the crack advances 
a distance dc. For steady-state cracking, the stress at 
the crack front remains unchanged during crack ex- 
tension, and the stresses far behind and ahead of the 
crack front also remain unchanged. Hence, the energy 
changes in the specimen due to crack extension are the 
differences in energy between two strips, which are, 
respectively, far behind and ahead of the crack front, 
of thicknesses dc. In the strip far ahead of the crack 
front, the fibre and the matrix remain bonded. In the 
strip far behind the crack front, interracial debonding 
and sliding occur within a length of 2h which is de- 
noted by a shaded region in Fig. 3. Hence, to analyse 
the energy difference between these two strips, it is 
sufficient to consider the two shaded regions in Fig. 3 
which are designated as Regions I and II, respectively, 
for the regions ahead of and behind of the crack front. 

During crack extension and interfacial debonding, 
the stress changes in the fibre and the matrix are 
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Figure 3 Schematic illustration of a steady-state matrix crack, 
which is induced by residual stresses, in a long specimen of unit 
depth to analyse the matrix cracking stress. 

significant only in the axial direction. Hence, the en- 
ergy due to only the axial stress is considered for the 
fibre and the matrix. 

The elastic strain energy difference between regions II 
and I, dUf(r) + dUm(r), is hence 

h Vf Ec((y2d -- 3ofZ)dc 
dUf(r) + dUm(r)  = (20) 

3 VmEfEm 

2.3.2. The sliding energy 
The sliding energy exists in region II but not in region 
I. In region II, the axial displacements result from both 
the axial stresses described by Equation 8 and the 
stress-free thermal strains, and the solutions are 

Wf(Z) = Z L "~- ~fAT 0 ~< z ~< h (21a) 

[(2h_2hEm- Z) (Ymd ] Wm(Z)=Z L + a m A T ~  0~<z~<h (21b) 

Energy is dissipated due to the relative displacement 
between the fibre and the matrix under an average 
interracial frictional stress, ~i. The sliding energy in 
region II is equal to the change in the sliding energy 
due to crack extension, such that 

2.3. 1. The elastic strain energy  
In region I, the fibre and the matrix remain bonded, 
and the residual axial stresses in the fibre and the 
matrix, ~f~ and c%~, are uniform along the axial direc- 
tion. The elastic strain energy density in the fibre and 
the matrix are cr~/2Ef and (~2mz/2Em, respectively. With 
unit depth, the volume in region I is 2hdc. Because the 
fibre and the matrix have the volume fractions of 
Vf and Vm, respectively, the corresponding elastic 
strain energies, Uf(r l  ) and Urn(r1), in region I are 

h Vf ~2fzdc 
U f ( r l )  - -  Ef  (16a) 

h Vm ~2m~dc 
Um(rl) -- Er. (16b) 

The total elastic strain energy in region I becomes 

- 4 a d c  ['h 
dUs -- b5 | ~ i ( W f  - -  wm)dz  

Jo 
(22a) 

where the negative sign is due to the negative value of 
fi. Substitution of Equations 1, 9 and 21 into Equation 
22a yields 

hVfEcCrfd(3~fz - 2~fd)dC 
dUs = (22b) 

3 VmEfEm 

2.3.3. The energy release rates for matrix 
cracking and interfacial debonding 

In region II, the energy required for matrix cracking 
and interracial debonding, dGm and dGi, are 

dGm = VmGmdc (23a) 

4ahGidc 
dGi - b2 (23b) 

hVfEcCfgzdc 
Uf(rl ) + Um(rl ) --  VmEfEm (17) 

Equation 17 is identical to Equation A4 in Part I, 
which was derived by using the Eshelby model [15]. 

In region II, interracial debonding and sliding oc- 
cur. The axial stresses in the fibre and the matrix, 
cyf and CYm, are described by Equations 8a and b, 
respectively. The total elastic strain energy in the fibre 
and the matrix, Uf(r2 ) -[- Urn(r2) , is 

Vmdc f t  0 = Vfdc Ihcy~dz + cy2dz (18) 
Uf(r2) -[- Um(r2) E f  J0  

Substitution of Equations 8a and b into Equation 18 
yields 

h Vf Ec~ddc 
Uf(r2 ) --[- Urn(r2 ) --  3VmEfErn (19) 

Substitution of Equation 7 into Equation 23b yields 

hVfEc((ifd - Crfz)2dc 
dGi = (24) 

VmEfEm 

2.3.4. The matrix  cracking s tress  
The critical residual axial stress in the fibre, O-fz(c), 
required for matrix cracking, can be obtained from the 
energy balance relation, such that 

dUftr)  + dUm(r) + dUs + dGm + dGi = 0 

at ~fz = of~(o) (25) 

Substitution of Equations 20, 22b, 23a and 24 into 
Equation 25 yields 

6~iV2mEfEmGm (26) 
[3~fz(c ) - -  20"fa ] o-f2a --  aVfE C 
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In the absence of interracial bonding, Equation 26 
becomes 

(6~ivzEfEmGm'] 1/3 (27a) 

The corresponding critical residual axial stress in the 
matrix, ~mz(~), for matrix cracking is 

(Ymz(c) : ( -  6T' iVf2EfEmGm'] l /3  ] (27b) 

Equation 27b is identical to the result derived by 
Aveston et al. [2]. 

3. Comparison 
The displacements and matrix cracking due to resid- 
ual axial stresses are now compared to those due to 
axial loading derived in Part I. 

3.1. Matrix cracking due to axial loading 
When the axial loading stress on the fibre is Oo, the 
half crack-opening displacement, Uo, and the displace- 
ment of the composite due to interracial debonding, 
Uaebona, have been derived, such that [1] 

- -  a g m E m ( c y  g - -  (7~) 
Uo = (28a) 

4 E f E c ~ I  

2 2 2 -- aVmEm(cYo cY 2) 
Udebond = 4EfEc2~i  (28b) 

where o-a is the loading stress on the fibre to initiate 
interfacial debonding. The critical axial loading stress 
on the fibre, Gri, for matrix cracking is dictated by [1] 

3 30.2~cri + 2(y3 -- 6~iEfE2cGm 
O'er i - -  ~_. aVfVmE2m (28c) 

The functional dependences of Equation 28~c  are 
different from those of Equations 11, 14 and 26. How- 
ever, it is noted that whereas the axial load at the 
crack surface is carried by the fibre only, the residual 
axial stresses exist in both the fibre and the matrix. To 
avoid this difference in the "stress mode", the "strain 
mode" is considered as follows. 

Using the "strain mode" and Equation 5 (which 
relates sa and hence o-a to GO, Equation 28a~c can be 

- -  aVmEfEmg2O G i 
Uo = + - -  (29a) 

4Ec~i ~i 

rewritten as 

2 2 2 
- -  a V m E f E m e  0 V m E m G  i 

Udeb~ = 4Ec2~i + E c ~  (29b) 

3 12Ec Gigc~i 16(_  EcGi ~3/2 _ 6~iE2Gm 
Scri a V m E f E m  -}- \ a V m E f E m / ]  - a V f  2 2 V m E f  E m 

(29c) 

where to = oo/Ef and ec,~ = aori/Er. Equations 29a-c 
will be used for comparison with those due to residual 
axial stresses obtained in Section 3.2. 

3.2. Matrix cracking due to residual axial 
stresses 

Using Equations 3a and 7, Equations 11, 14 and 26 
can be rewritten as 

- -  agmgfEmg2T  a i  
+ - -  (30a) 

Uo = 4Ec~ ~i 

Udebond : 

2 2 2 -- aVmEfEmew VmEmGi 
+ - -  (30b) 

4Ec2~i E c ~ i  

3 
ET(C) 

12EcGigT(C) 

a V m E f E m  

16( EcGi ~3/2 __ 6~E2Gm 
q- \ a g m g f E m / I  - a g f g m E 2 E 2 m  

(30c) 

where eT(C) is related to ~fz(r by Equation 3a. It is 
noted that Equation 29a-c are identical to Equation 
30a-c when to and ecri are replaced by eT and eTtC), 
respectively. 

4. Extension of Part I 
Three issues related to Part I, i.e. "the effective fracture 
toughness of the composite, the critical loading stress 
for matrix cracking in the presence of residual stresses, 
and the debonded fibre length at matrix cracking due 
to loading, are addressed in this section. 

4.1. The effective fracture toughness 
of the composite 

The matrix cracking stress derived in the present study 
is steady state, i.e. a long crack asymptote. To derive 
the matrix cracking stress for a short crack, three steps 
are involved [3 7]. First, a relation between the fibre 
bridging stress and the crack opening displacement is 
required. Second, based on the bridging stress-crack 
opening displacement relation, an iterative numerical 
calculation is required to derive a self-consistent crack 
profile and bridging stress at a given applied stress. 
Third, the stress intensity is calculated from the self- 
consistent bridging stress which is then equated to the 
effective composite toughness to derive the matrix 
cracking stress. Based on the above procedures, the 
matrix cracking stress for a short crack has been 
analysed elsewhere [-3-7]. However, different results 
have been obtained. These differences are due to the 
adoption of different effective composite toughnesses. 
This effective composite toughness is addressed as 
follows. 

Two different relations between the fracture tough- 
ness of the composite and of the matrix, Kc and Kin, 
have been derived [3, 4]. By assuming that the strains 
in the composite and the matrix are the same in the 
region immediately ahead of the crack, and that the 
toughness scales with the stress, the Kc - Km relation 
is [33 

E c K m  
Kc - (31) 

E m  
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By considering the energy required to grow the matrix 
crack, the result derived by McCartney is [4] 

= (VmEc~ 1/2 
K C ~ Em / K m (32) 

It has been discussed that McCartney's result is ener- 
getically consistent [4]. 

Including interracial bonding in the present analy- 
sis, interracial debonding is required during matrix 
cracking. The energy required to crack the matrix and 
to debond the interface is 

4ahGi 
Gc = VmGm + b ~  (33) 

where the debonded length, h, and the energy release 
rate for interracial debonding, G~, have been defined, 
respectively, by Equations 17b and 34 in Part I. The 
energy release rates for cracking, Gm and Gc, can be 
related to toughnesses, Km and K o  by 

K m = (gmam) 1/2" (34a) 

Kc = ( EcGc) 1/2 (34b) 

Substitution of h, Gi, and Equation 34a and b into 
Equation 33 yields 

F.VIEc 2VfVm(ero - era)G!ll /2 
Kc = L Em ~iarn K m (35) 

In the absence of interfacial bonding, Gi = 0 and 
McCartney's result (i.e. Equation 32) is recovered. 

4.2. The critical loading stress for matrix 
cracking in the presence of residual 
stresses 

Ignoring the interfacial bonding, the effect of the resid- 
ual axial stresses on the critical loading stress for 
matrix cracking has been addressed; however, the ana- 
lytical solution was not explicitly given [1]. This solu- 
tion is given as follows. 

The matrix cracking stress due to both applied 
stress and residual axial stresses can be obtained by 
substituting Equations 28, 30b, 33a, 35 and A10 into 
Equation A l l  in Part I, such that 

( Ec~fz'~3 (Ecerfz'~3 = _ 6~qEfE2am 
ercri WmErn/I + \gmEm] agfVmE2m (36) 

When the residual axial stress is small compared with 
the loading stress, the second term on the left-hand 
side of Equation 36 can be ignored, such that 

Ecerfz ( -- 6{iEfE2 Gm~ 1/3 
er~ V~mm- ,, aVfVmE2m j (37) 

Furthermore, using the relation between af= and 
O-mz described by Equation 1, Equation 37 can be 
converted to 

Ec(~mz ( -  12;ciVf2EfE2Tm~l/3 
erc~i + E ~  - - .  ~ .j (38) 

where ao~r~ ( = Vfacr~) is the critical applied stress on 
the composite for matrix cracking, and Ym( = Gm/2) is 
the fracture surface energy of the matrix. Equation 38 
is identical to the result derived by Budiansky et al. 
1-14]. 
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4.3. The debonded fibre length at matrix 
cracking due to loading 

Interracial debonding and friction occur during matrix 
cracking. The premise of the matrix cracking stress 
derived in Par.t I is that the fibre is sufficiently long for 
interfacial debonding and sliding to occur. To ensure 
this premise, it is crucial to have a knowledge of the 
debonded fibre length when steady-state matrix crack- 
ing occurs. The relation between the debonded length 
to fibre radius ratio and the energy release rate ratio of 
interfacial debonding to matrix cracking (i.e. h/a and 
Gi/Gm) has been addressed elsewhere; however, inter- 
facial friction was ignored [-14]. Including interfacial 
friction, the debonded fibre length at matrix cracking 
due to loading is addressed as follows. 

To reduce the number of parameters, the residual 
stress is ignored. However, an approximate residual 
stress effect can be included by replacing o-o~ With 
a~ + Ec~rmffEm (see Equation 38) in the solution. The 
h/a versus G]Gm relation can be obtained by satisfying 
the following three Equations. First, the equation dic- 
tating the critical loading stress on the fibre, croci, for 
matrix cracking is [1] 

3 30"2 ercri -t- 2erd 3 3 (39) ercri -- ~ O'cri(O) 

where a~r~(O) is the critical loading stress on the fibre 
for matrix cracking when the interface is unbounded, 
and is given by [1] 

.--_ 6~.IEfE2Gm'~ 1/3 
er~i(0) = aVfVmE2m j (40) 

Second, the loading stress on the fibre, 0% to initiate 
interfacial debonding can be related to Gi by [1] 

= 2(EfEcGi~ 1/2 
era \a--g-~mE~J (41) 

Third, the debonded fibre length, h, is [1] 

-- aVmEm(ercri -- erd) 
h = (42) 

2Ec~i 

The h/a versus GffGm relation can be obtained from 
Equations 39, 41 and 42, and the results are shown as 
follows. 

The critical applied stress on the composite, crc~i, for 
matrix cracking has been measured for Nicalon fibre- 
reinforced lithium aluminosilieate (LAS) composite 
[16, 17]. The material properties pertinent to this 
composite are: Ef = 200 GPa, E m = 85 GPa, Vf = 0.5, 
a = 8 g m ,  Gin=44 N m  -1, and - ' c i = 2 M P a  [-16]. 
Also, this composite has negligible residual stresses 
[16]. Unless noted otherwise, these materials proper- 
ties will be adopted below to examine the essential 
trends of the debonded fibre length, h. 

4.3. 1. The Nicalon/LAS composites 
The debonded fibre length; h, as a function of Gi is 
calculated and shown in Fig. 4 for Nicalon/LAS com- 
posites. The critical applied stresses on the composite 
for matrix cracking, ~c~i, and for interracial debonding, 

= , ~ and ~ in- ~r~ ( Vf~rd) are also shown. Both cr~ri oa 
crease and h decreases with the increase in Gi. When 
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debonding,  G~, for Nica lon/LAS composites.  
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Figure 5 ( - - )  The normalized debonded fibre length, h/a, and (- - -) 
the critical loading stress in the fibre for matr ix cracking, errs, as 
functions of the energy release rate ratio, GIG, at different values 
of (a) fibre volume fraction, Vf, and (b) interfacial frictional stress 

the interface is unbonded, the critical applied stress on 
the composite for matrix cracking, o-c~i(o) ( = VfO-or!(0)), 
can be calculated from Equation 40 and is 265 MPa. 
The measured ac~i is ~290 MPa [16]. Because the 
residual stress is negligible [16], the difference between 

oo aori(o) and crc~ i~ could be due to interfacial bonding. 
Based on the measured o-~~ and Fig. 4, G~ is 
~0.1 J m -2 and h = ~240 gm. These results are in 
agreement with the experimental evaluations E16] of 
Gi being less than 0.4 J m -2 and h being greater 
than 200 gin. It is noted that the loading stress on 
the composite for debonding, o-2, is significant 

(~  90 MPa) even when G~ is small (~  0.1 J m-  2). This 
is due to the small radius of the fibre (see Equation 41). 

4.3.2. Effects of Vf and  f~ on h/a 
When the volume fraction of fibres is changed, or the 
interface has been modified [18-20] such that the 
interracial frictional stress is changed, the debonded 
fibre length will be changed accordingly. The ratio of 
debonded fibre length to fibre radius, h/a, as a function 
of the energy release rate ratio, Gi/Gm, is shown in 
Fig. 5a and b, respectively, at different values of Vf and 
~i. When the volume fraction of fibres or the interracial 
frictional stress is decreased, longer fibres are required 
to ensure full development of the bridging stress in the 
fibre during matrix cracking. The critical loading 
stress on the fibre, ac~i, for matrix cracking is also 
shown in Fig. 5. It is noted that O'er i should not exceed 
the tensile strength of the fibre (~  2 GPa for Nicalon 
fibres [21]). Otherwise, fibre fracture occurs before 
matrix cracking. 

5. Conclusion 
When the matrix has a greater thermal expansion 
coefficient than the fibre, residual axial tension and 
compression are induced, respectively, in the matrix 
and the fibre during cooling. Interracial debonding 
and matrix cracking due to these residual axial stres- 
ses are analysed for unidirectional fibre-reinforced 
ceramic composites in the present study. Three ana- 
lytical solutions are derived: (a) the crack-opening 
displacement, Uo, (b) the axial displacement of the 
composite due to interfacial debonding, Udebona, and (c) 
the critical residual axial stress in the fibre for matrix 
cracking, afz(c) �9 The corresponding solutions due to 
axial loading have been derived in Part I, i.e. (a) Uo, (b) 
Udebond , and (c) the critical axial loading stress on the 
fibre for matrix cracking, O'cr~. It is noted that solutions 
of residual stress-induced cracking (see Equation 
30a-c) become identical to those of load-induced 
cracking (see Equation 29a-c) when the loading strain 
in the fibre, eo, in the latter case is replaced by the 
mismatch strain between the fibre and the matrix, eT, 
in the former case. The existing solution for matrix 
cracking due to residual axial stresses [2] can be 
recovered by ignoring the interfacial bonding in the 
present solution. 

Three issues related to Part I have been addressed. 
First, the effective toughness of the composite, Kc, has 
been derived which is essential in analysing the matrix 
cracking stress for short cracks. Considering the en- 
ergy required to crack the matrix and to debond the 
interface, the present solution of Kc agrees with 
McCartney's solution [4] when interfacial bonding is 
ignored in the present solution. Second, ignoring the 
interracial bonding, the analytical solution of the criti- 
cal loading stress for matrix cracking in the presence 
of residual stresses has been given. When the residual 
stress is small compared to t h e  critical loading 
stress, the existing solution [14] is recovered. Third, 
the debonded fibre length at matrix cracking due to 
loading has been analysed. This solution is required to 
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ensure that the fibre is sufficiently long for interfacial 
debonding and sliding to occur during matrix 
cracking. 
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